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ON STABILIZATION WITH A PRESCRIBED REGION
OF ASYMPTOTIC STABILITY

LAHCEN SAYDY,} EYAD II. ABED AND ANDRE L. TITS

Department of Electrical Engineering
and the Systems Research Center
University of Maryland, College Park, MD 20742, USA

ABSTRACT

An important unsolved problem in nonlinear control is that of stabilization with a prescribed
region of stability. In this paper, sufficient conditions are obtained for the existence of a linear feedback
stabilizing an equilibrium point of a given nonlinear system with the resulting region of asymptotic

stability (RAS) containing a ball of given radius. Conditions for global stabilization are also given.

Feedback stabilization is achieved while satisfying a certain robustness property. The technique is
applied to planar systems, resulting in a complete design methodology for this case. Examples and
simulations illustrating the method are presented.

1. INTRODUCTION

Given a nonlinear control system & = f(x,u) where f : IR" x IR™ — IR" is a smooth mapping satisfying
£(0,0) = 0, it is well known that if the associated linearized system is stabilizable, then there exists a
linear feedback control which also stabilizes the (null solution of} the original nonlinear system. The
null solution of the closed-loop nonlinear system of course possesses a nonempty region of asymptotic
stability (RAS). The size of the RAS is usually not stated as an ezplicit control objective. The reason
for this is the lack of systematic analytical tools for the synthesis of feedback control laws achieving
specifications on the RAS. The importance of obtaining such tools is clear, and has been emphasized
" in [1}.

The traditional approach based solely on linearization at an operating point is often considered
unreliable from a stability point of view. An alternative design method consists in repeated testing of
the performance of the closed-loop system for each of a set of possible stabilizing control laws. Since
approximation of the obtained RAS is often very difficult, each of these tests typically involves many
simulations of the closed-loop dynamics, and the method is hence very costly [2].

In this paper, sufficient conditions are obtained for the existence of a linear feedback stabilizing
an equilibrium point of a given nonlinear system with the resulting region of asymptotic stability
(RAS) containing a ball of given radius. Conditions for global stabilization are also given. Feedback
stabilization is achieved while satisfying a certain robustness property. Synthesis of the desired feedback
control laws rests on the solution of certain nonstandard questions in linear systems. These questions
are addressed successfully for the case of planar systems, for which a complete design methodology is

achieved. Examples and simulations illustrating the method are presented.

1 On leave from Faculté des Sciences de Marrakech, Université Cadi Ayyad, Marrakech, Morocco.



2. SUFFICIENT CONDITIONS FOR STABILIZATION
WITH PRESCRIBED RAS

Before presenting the main results of this section, we establish notation. With S a subset of @, Re(S5)
denotes the set {Re(s) : s € S}. For a real matrix M, [M], and [M],, denote its symmetric and

skew-symmetric parts, respectively:

(M), == =(M + MT),

| SR NP

[M}ys := =(M = MT).

The spectrum of M is denoted by o(M). For z a vector in IR", |z| denotes its Euclidean norm.
Denote by B(R) the open ball in IR" of radius R centered at the origin. By IR.. and (%'__, we intend
(—00,0) and the open left-half of the complex plane, respectively. For S a given set, S™ denotes the
Cartesian product S x S X -+ x S (n times).

Two definitions relating to stabilizability of linear systems are now introduced. Let A and B be

real matrices of dimensions n x n and n X m, respectively.

Definition 1: Say that the pair (A,B) is symmetrically stabilizable ' if 3K € IR™*" such that
o([A+ BK],) CIR?. For A a nonempty subset of IR”, the pair (A,B) is said to be symmetrically
stabilizable within A if VA € A, 3K € IR™*" such that ¢([A + BK],) = A.

Definition 2: Say that the pair (A4,B) is normally stabilizableif 3K € IR™*™ such that 0(A+BK) C

@ _ with A+ BK a normal matrix. Let A C (‘1,71 be nonempty. Say that (A,B) is normally stabilizable

within A if VA € A, 3K € IR™*" such that (A + BK) = A with A + BK normal.

It is a simple exercise to show that if (4,B) is normally stabilizable within A then it is symmet-
rically stabilizable within Re(A).

We consider nonlinear multi-input control systems ¢ = F(z)+ Bu where F : IR" — IR" is analytic

2 Tt is convenient to rewrite the

over IR" and satisfies F(0) = 0, and where B is an n X m matrix.
model in the equivalent form

& = Az + Bu + h(x), (1)

where A := ZE(0) and A(z) represents higher order terms.
Let
h
H:={h:IR® — IR", analytic over IR" : h(0) = 0, -g—;(()) =0}

and define for a fixed R > 0 the following two functions on H
() Illg : H — IR such that

hix
r€B(R) ||
r#0

! Recall that Hurwitz stability of [M], implies that of M.

2 Notice that this model is not restrictive since a more general model 7 = f(z,v) may always be put

in the form above by letting = be the augmented state (z,v)” and taking u = v.



@) |l : H — IR4 U {00} such that

hiz
g = sup L
zel” 12l

T#0

Notice that limjz)_g Ji"%ll = 0 is well defined and that we allow the possibility ||h]] = co with the
understanding that inequalities such as ||hy + hal} < [|h1|} + ||h2]] are to be interpreted in the obvious
way when ||h1}| or {|h2]| is infinite. Then (¥, +,.) with either ||.||g or ||.|| is a normed vector space. This
can be seen easily, noting that analyticity of the elements of H implies that a function which vanishes

within B(R) must also vanish everywhere. We naturally define two balls in #:
Br(p) = {h e M : ||bllz < o},
B(p) :={heM: |||l < p}.
Theorem 1: Fix R > 0 and let (A,B) be symmetrically stabilizable within A C (—o0, ~||h||r )"

(resp. (~o00,—||h|| )"). Then the nonlinear control system (1) is stabilizable within B(R) (resp. globally

stabilizable) using linear state feedback.

The proof of this theorem relies on Proposition 1, given next. Let
i=F(z), F(0)=0 2)

where F is analytic over IR". Let the null solution of (2) be asymptotically stable in the sense of
Lyapunov. Denote the associated RAS by D”. Consider a change of coordinates z = QTz where Q is

an orthogonal matrix (i.e., @ satisfies Q7Q = QQT = I). In the new coordinates,
i =F(z) (3)
where
F(z) = QTF(Q2).
Clearly, the origin is also asymptotically stable for Eq. (3). The sets D* and D? are in general

different. However, we can use the fact that orthogonal transformations preserve norms and angles to

obtain the following proposition.

Proposition 1: The largest Euclidean balls in D* and D? are identical.

Consequently, for each B > 0

B(R)CcD* <« B(R)CD".

Proof of Theorem 1: Let (A1, Ag,...,An) € A. Since (A4, B) is symmetrically stabilizable within

A, there is a feedback gain matrix K such that
U([A + B]i’],) = {/\1, Az, .. .,An}.

By sctting u(x) = K« in (1), we obtain the closed loop system
&= (A+ BK)x + h(z) (4)
=[A+ BK]},sz + [A + BK],z + h(z).



Since [A + BK], is symmetric, it can be diagonalized using an orthogonal transformation. Let Q be

such a transformation and define new coordinates z = QT z. Then z satisfies

¢ = Gz+ Dz + h{z) (5)
where
D= diag()q, /\2, . .,/\n),
G =Q"[A+ BK],,Q
and

h(z) = QTh(Qz).

Now consider the Lyapunov function candidate V(z) = -,}[z|2 and note that B(R) is a level set for V.

The derivative of V along trajectories of (5) is
V(z) = 27Gz + 2T Dz + 2T h(z).

The first term vanishes since G is skew-symmetric. Thus,

V@) SN el B
< max (\) 21 + |Iklir |21

= (0 +16ln ) 1o o

for all z € B(R). Noting that A C (—oo, —||h||r)", we have that V(z) < 0 for all nonzero z € B(R).
A standard Lyapunov stability result now implies B(R) C D*. In view of Proposition 1, an analogous
statement also holds for Eq. (4). This proves the first assertion of Theorem 1. The second assertion

similarly follows from the observation

Ve < max o+ lal ) 1

<0

for all z € IR™, z # 0. This proves global asymptotic stability.
O
Robustness of the stabilization property of Theorem 1 with respect to perturbations in the nonlinear
terms h(z) is now considered. The higher order terms h(z) do not affect asymptotic stability of the
null solution of a hyperbolic system (linearization with no imaginary eigenvalues). In our framework,
we note that for u(z) = Kz a linearly stabilizing feedback, the null solution of & = (A+ BK)z + h(z) is
asymptotically stable for all h € H. However, the RAS does indeed depend on variations in h. The next
result states that the linear feedback u(z) = Kz in Theorem 1 is rpbust to variations in h. Specifically,
the assertion is that B(R) is guaranteed to be within the RAS for each member of a family of systems

each of whose linear parts is £ = (A + BN)z.



Theorem 1 (Robustness Form): Let B > 0 be fixed. Suppose that (A, B) is symmetrically stabi-
lizable within A C IR", and let

= A).
= g

If h € Br(laf) (resp. B(Ja|) ), then the nonlinear control system & = Az + Bu + h(z) is stabilizable
within B(R) (resp. globally stabilizable) using linear state- feedback.

Under the foregoing assumption, this asserts the existence of a feedback gain matrix X € IR™X"
for which the associated RAS contains B(R), for each h € Bg(|a|). No h € Br(]e]) results in an RAS
not entirely containing B(R).

3. PLANAR SYSTEMS

In this section, we apply the results of Section 2 to planar systems, i.e., systems as in (1) with

A€ IR™? and b € IR*\ {0}.! Let

A={(A1,X2) €IR_. xIR_: A\ # Az and A1, A2 € 0(A) },

T . . 2
v(A,b) = b—éw and p(A,b):= L@_(__A;_)_b}_
[6] 16}
Also, define the set A(A,b) by
A(A, ) = {(M1,A2) € A Adg — w(4, ) (A1 + A2) + p(A4, ) = 0}, (7)

where Adj(A) denotes the adjugate of A. The defining equation in (7) is that of a hyperbola. This

hyperbola is equivalently characterized by

_ (A D)X — u(A,b)
de = = ®

For the next result, we assume that the hyperbola (8) is nondegenerate, i.e. it is not a horizontal

line. It will be seen shortly that this assumption amounts to (4, b) being controllable.

Theorem 2. Assume that (A,b) is controllable. Then the pair (A, b) is normally stabilizable within
A(A,b) if and only if ¥(A,b) < 0. Furthermore, given any set of desired closed-loop eigenvalues
(A1,A2) € A(A,b), the corresponding normally stabilizing feedback gain is given by

k=01 1[(MI-A4)7" (AoI=A)" 1] (9)

Proof. First, we show that A(4,b) # @. From Eq. (8), we obtain

s p(Ab) - v2(A,b)
M T (A —-w(A,0)

(10)

1 If we let B be a nonzero 2 x 2 matrix, then it is either nonsingular, in which case the stabilization
problem becomes trivial, or of rank one. The latter case is equivalent to considering B to be a vector b

in IRZ.



Define the controllability matrices ', Cy by C = [b Ab], C := [b Adj(A)b] and note that det(C,) =
—det(C') # 0. Then it easily follows that

det(CTCy) = (det(Ca))® = 1b]* (1(A, b) — v*(A4,b)) > 0. (11)

and hence that A, is a monotonically strictly increasing function of A;. A quick sketch of the plot of
X, as a function of A; convinces us that A(4,b) N IRZ # @ precisely when v(A,b) < 0. The sketch just
referred to is also useful in finding pairs (A1, A2) € A(A,d). To find such a pair, we may simply pick a
value A1 in (v(A4,)),0)\ 0(A), and then use Eq. (8) to compute the corresponding value of A;.

Next, we show that for (A1, A2) € A(A, b), the vectors

v=(NI-A)"%, i=1,2
are orthogonal. It is equivalent to show that the vectors w; and w, are orthogonal, where
wi =xalX) v, i=1,2
and xa(s) denotes the characteristic polynomial of A. (Recall that Ay, A3 ¢ 0(A).) We have
wlwy = b7 (Adj(M T — A)T Adj(Ao] — A)b

=7 (Alz\gl — MAdj(A) - A2AdiT(A) + AdjT(A)Adj(A)) b

= [B* Atda = (A1 + A2)bT Adj(A)b + |Adj(A)b|* .
Since (A1, Az) € A(A,b), it follows that wi we = 0.

We now show that v; and vy are eigenvectors of A 4 bk corresponding to Ay and A,, respectively.

Let V = [v; vp]. Then k=[1 1]V-! and

[(A+bk)oy (A+bk)uy ] = (A+Bk)V = AV + bkV
= [A'Dl +b A‘Ug + b]

On the other hand, Av; + b = (A(AiI — A)~! + I) b = Aw; for i = 1,2. Therefore
(A -+ bk)’l),' =Ny, i=1,2,

i.e., o(A+ bk) = {X1, A2}. Since the eigenvectors v; and vy are orthogonal, we obtain that A + bk is a
normal matrix (in fact symmetric since A; and A, are real).

O

Theorem 2 states that if (A4, b) is controllable and (A, b) < 0, then every pair (A1, A2) € A(A,b)

may be assigned via linear linear feedback while achieving the normality requirement. It is not necessary

however that a pair (A4, b) be controllable for it to be normally stabilizable.

Remarks.
1. It is easily shown that by allowing complex eigenvalues in A and A(A4, §), one obtains one additional
pair of assignable eigenvalues; namely v(A, b) = i|det(C)|. Thus the set of all distinct assignable

eigenvalues not in o(A) is essentially real,



2. The condition v(A,b) < 0 implies that det[b Adj(A)b] # 0, hence (A,b) controllable since
det[b Ab] = —det[A Adj(A)b], in all but the case when b and Adj(A)b are of opposite directions.
3. Note that it is not possible to force both eigenvalues to be arbitrarily large. Clearly, this is a
consequence of the normality requirement. It can be shown that in order for a pair (A,B) to
be “arbitrarily” normally stabilizable (normally stabilizable with arbitrarily negative assignable
closed-loop cigenvalues) it is necessary and sufficient that rank (B) = n, n being the size of A.
The next theorem is a direct consequence of Theorems 1 and 2. Let B > 0 be a fixed number.
Theorem 3: Assume that v(4,0) < 0. If h € Br(Jv(A,b)]) (resp. B([v(A,b)]) ) then there exists
a linear feedback u(z) = kz such that (the origin of) the closed-loop system & = (A + bk)z + h(z) is
asymptotically stable within B(R) (resp. globally asymptotically stable). Furthermore, for any desired
closed-loop eigenvalues A\; € (¥(4,b),—|lhllr )\ o(A) (resp. (v(A,b),—||h]| )\ o(A) ) and A, given by
(8), the feedback gain k is given by (9).
The analogue of Theorem 1 (Robustness Form) in the two-dimensional case follows by taking « to
be any number strictly between (A, ) and 0. The desired feedback k is obtained in a manner identical

to that outlined in Theorem 3, with —||h||r (resp. — ||h]]) replaced by «.
4. EXAMPLES

Example 1: Let R = 1 and consider the system

. .3 ,

Ty = --é-zl + 22+ 27

To==To+u-— 2,‘%.
The origin of the unforced system is unstable since o(4) = {—%,1}. It is easily checked that (A,b) is
controllable, ¥(A,b) = -2, ||h||r=1 = 1 < |v(4,d)| and p(4,b) = 13 By picking A in (=2, —||h||r )\
a(4) = (-§,-1), say Ay = =3, we get from (8) that A, = —1l and from (9) that k=1 — Z%]. The
closed-loop system is

. 3 2

Ty = —3% + T2+ 2§

, 21 y
Xo = Iy — -4—:132 — Ty.

Simulations of the closed-loop system for various initial conditions, shown in Fig. 1, corroborate
the fact that B(1) is contained in the actual RAS. Note that some initial conditions in the immediate
vicinity of B(1) lead to instability (e.g., o = (1.4,0) and (1.2, 1.2)).

Example 2: We consider globally stabilizing the system
g = —§$1 + 2
2
&g = - + z2 -+ u +sin(xy).
Here, A and b are as in Example 1, h(z) = [0,sin(21)—21]7 and ||A|| = 1.217. Proceeding as in Example
1, we obtain by choosing A, = --% that the closed-loop system is

Iy = —721+ 22
2

. 21 .
£y =~ + sin(z,).



With the Lyapunov function V(r) = 2% 4 22, we find that V(z) < —r¥ - ]—Zzaﬁ < O forall e £ 0.
Therefore, the null solution of the closed-Joop system is globally asymptotically stable, as predicted by

Theorem 3.
5. CONCLUSION

Sufficient conditions for stabilizability of nonlincar systems with a region of asymptotic stability
containing a prescribed ball in IR" have been presented. Under a symmetric stabilizability condition on
the system linearization, it was shown that there is a linear stabilizing controller, and that the closed-
loop system stability is robust to certain model pertdrbations. Necessary and sufficient conditions for
normal stabilizability of a two-dimensional linear time-invariant system were obtained. These facilitated
identification of a closed-form formula for a stabilizing feedback gain k& which guarantees stabilization
within a given ball. Necessary and sufficient conditions for normal stabilizability of a general pair (A,B)

1s an issue that is currently being considered.

Acknowledgment. The authors’ research is supported in part by the US National Science Foundation
under Grants ECS-86-57561, DMC-84-51515 and CDR-85-00108, and by Air Force Office of Scientific
Research Grant AFOSR-87-0073.

REFERENCES

[1] E. Polak and D.Q. Mayne, “Design of nonlinear feedback controllers,” IEEE Trans. Automatic

Control, Vol. 26, 1981, pp. 730-733.
[2] Many Authors, “Challenges to control: A collective view,” IEEE Trans. Automatic Control, Vol.

32, 1987, pp. 275-285.

z3

-0.786
] (-1,-1)
-1.8) (e 13)
-2.2% . — v , B
- >. M " . N .'o 1 [ 4 3.

Fig. 1 Closed Joop trajectories for Example 1



